We put the Apple iPhone 14 Pro Max through our rigorous DXOMARK Battery test suite to measure its performance in autonomy, charging and efficiency. In these test results, we will break down how it fared in a variety of tests and several common use cases.
Overview
Key specifications:
- Battery capacity: 4323 mAh
- 20W charger (not included)
- 6.7-inch, 1290 x 2796, 120 Hz, OLED display
- Apple A16 Bionic (4 nm)
- Tested ROM / RAM combination: 512 GB + 6 GB
Scoring
Sub-scores and attributes included in the calculations of the global score.
Apple iPhone 14 Pro Max
133
battery
161
Honor X7b
Best: Honor X7b (221)
129
Samsung Galaxy M51
Best: Samsung Galaxy M51 (195)
144
Samsung Galaxy M51
Best: Samsung Galaxy M51 (198)
100
Realme GT Neo 5 (240W)
Best: Realme GT Neo 5 (240W) (224)
114
Realme GT Neo 5 (240W)
Best: Realme GT Neo 5 (240W) (212)
88
Nubia RedMagic 7 Pro
Best: Nubia RedMagic 7 Pro (205)
176
Apple iPhone 14 Pro
Best: Apple iPhone 14 Pro (194)
Key performances
These key points are derived from the lab measurements during testing and do not figure into the overall score. The lab measurements, however, are used for the overall score.
3h20 autonomy
after 5-minute charge
Position in Global Ranking
41
st
3. Honor Magic6 Lite (5800 mAh)
156
8. Honor Magic6 Lite (5300 mAh)
150
9. Realme GT Neo 5 (240W)
147
16. Samsung Galaxy S23 Ultra
142
26. Samsung Galaxy A15 LTE
137
27. Apple iPhone 13 Pro Max
136
27. Xiaomi Redmi Note 12 Pro 5G
136
37. Apple iPhone 15 Pro Max
134
37. Xiaomi Redmi Note 11 Pro 5G
134
41. Apple iPhone 14 Pro Max
133
41. Vivo X60 Pro 5G (Snapdragon)
133
41. Xiaomi Redmi Note 11S 5G
133
48. Xiaomi Redmi Note 12 5G
132
48. Xiaomi Redmi Note 10S
132
56. Oppo Reno6 Pro 5G (Snapdragon)
130
56. Samsung Galaxy S24 Ultra
130
58. Samsung Galaxy A34 5G
129
58. Samsung Galaxy A23 5G
129
58. Xiaomi Redmi Note 12 Pro+ 5G
129
58. Xiaomi Redmi Note 10 Pro
129
66. Samsung Galaxy A15 5G
127
75. Samsung Galaxy A13 5G
125
83. Apple iPhone 12 Pro Max
121
83. Samsung Galaxy A55 5G
121
86. Xiaomi Redmi Note 13 Pro 5G
120
86. Xiaomi Redmi Note 10 5G
120
98. Samsung Galaxy A14 5G
117
105. Crosscall Stellar-X5
115
109. Samsung Galaxy Z Fold5
114
109. Xiaomi Mi 10T Pro 5G
114
114. Samsung Galaxy A54 5G
113
118. Motorola Moto G62 5G
112
122. Motorola Moto G9 Power
111
122. Samsung Galaxy S21 Ultra 5G (Snapdragon)
111
122. Xiaomi Redmi Note 13 Pro Plus 5G
111
128. Samsung Galaxy Z Flip5
109
128. Samsung Galaxy S24+ (Exynos)
109
132. Samsung Galaxy S21 5G (Snapdragon)
108
136. Samsung Galaxy S24 (Exynos)
107
136. Xiaomi Mi 11 Lite 5G
107
138. Samsung Galaxy A52 5G
106
142. Samsung Galaxy S22 Ultra (Snapdragon)
103
145. Motorola moto g34 5G
102
149. Samsung Galaxy S23 FE
101
149. Samsung Galaxy A35 5G
101
151. Samsung Galaxy S21 5G (Exynos)
100
151. Xiaomi Redmi 10 2022
100
156. Apple iPhone 13 mini
99
156. Samsung Galaxy Z Fold4
99
156. Vivo X80 Pro (Snapdragon)
99
161. Motorola Edge 30 Pro
98
161. Samsung Galaxy S22 Ultra (Exynos)
98
165. Samsung Galaxy A33 5G
96
168. Samsung Galaxy Z Flip4
95
168. Samsung Galaxy S22+ (Exynos)
95
168. Samsung Galaxy A53 5G
95
173. Xiaomi Redmi Note 13 5G
94
175. Apple iPhone 12 mini
93
175. Samsung Galaxy S21 Ultra 5G (Exynos)
93
178. Samsung Galaxy Z Fold3 5G
92
179. Motorola moto g54 5G
90
179. Samsung Galaxy S22 (Snapdragon)
90
185. Apple iPhone SE (2022)
84
187. Samsung Galaxy S21 FE 5G (Snapdragon)
82
191. Samsung Galaxy S22 (Exynos)
75
Position in Ultra-Premium Ranking
12
th
4. Samsung Galaxy S23 Ultra
142
8. Apple iPhone 13 Pro Max
136
10. Apple iPhone 15 Pro Max
134
12. Apple iPhone 14 Pro Max
133
15. Samsung Galaxy S24 Ultra
130
20. Apple iPhone 12 Pro Max
121
25. Samsung Galaxy Z Fold5
114
28. Samsung Galaxy S21 Ultra 5G (Snapdragon)
111
31. Samsung Galaxy Z Flip5
109
31. Samsung Galaxy S24+ (Exynos)
109
38. Samsung Galaxy S22 Ultra (Snapdragon)
103
42. Samsung Galaxy Z Fold4
99
42. Vivo X80 Pro (Snapdragon)
99
44. Samsung Galaxy S22 Ultra (Exynos)
98
45. Samsung Galaxy Z Flip4
95
45. Samsung Galaxy S22+ (Exynos)
95
48. Samsung Galaxy S21 Ultra 5G (Exynos)
93
49. Samsung Galaxy Z Fold3 5G
92
Pros
- Excellent performance during a typical usage scenario, with low discharge currents
- Excellent autonomy in calibrated mode, especially when streaming videos
- Very good autonomy when scrolling on social apps on the go
- Low discharge currents overall
Cons
- Low autonomy when using the camera
- Poor charging experience
- Very low wired charge efficiency
The Apple iPhone 14 Pro Max reached an excellent global score but stands slightly below its predecessor, the iPhone 13 Pro Max. The latest device was tested with the “always-on display” mode turned off — a feature that we deactivate for all models in our tests for a fair comparison. The score difference with the 13 Pro Max was mainly due to slightly lower performance during on-the-go and calibrated tests, but the results remained close.
The iPhone 14 Pro Max showed an excellent performance during the typical usage scenario, with less than 2% lost per night on average. Outdoors, the screen’s brightness was excellent, but it came at a slight cost to the autonomy. Autonomy was very good when scrolling social apps, which we test in the subway, but battery performance struggled when using the new demanding camera and during the navigation tests. However, when testing in calibrated mode, the autonomy was above average across all our use cases, especially when streaming videos, but slightly below average in the call test.
When it came to charging, the small 20W charger took 2 hours and 21 minutes to fill up the 4323 mAh battery. Similarly, the wireless charger took 2 hours and 44 minutes to fully charge the battery, which was longer than average. The residual consumption of both wired and wireless chargers was very low.
The discharge currents were very low, too, meaning that the device was well-optimized, whatever the use case.
Compared with devices from the same Ultra-premium price range ($800+), the iPhone earned the second top score, just below its predecessor, thanks to its excellent autonomy and efficiency. However, its charging score was among the lowest.
Test Summary
About DXOMARK Battery tests: For scoring and analysis in our smartphone battery reviews, DXOMARK engineers perform a variety of objective tests over a week-long period both indoors and outdoors. (See our introductory and how we test articles for more details about our smartphone Battery protocol.)
The following section gathers key elements of our exhaustive tests and analyses performed in DXOMARK laboratories. Detailed performance evaluations under the form of reports are available upon request. Do not hesitate to contact us.
|
Battery |
Charger |
Wireless |
Display |
Processor |
Apple iPhone 14 Pro Max |
4323mAh |
20W (not included) |
15W |
OLED 1290 x 2796 |
Apple A16 Bionic |
Apple iPhone 13 Pro Max |
4352mAh |
20W (not included) |
15W |
OLED 1284 x 2778 |
Apple A15 Bionic |
Samsung Galaxy S22 Ultra (Snapdragon) |
5000mAh |
45W (not included) |
15W |
AMOLED 2X 1440 x 3088 |
Qualcomm Snapdragon 8 Gen 1 |
Oppo Find X5 Pro |
5000mAh |
80W (included) |
50W |
(LTPO) OLED 1440 x 3216 |
Qualcomm Snapdragon 8 Gen 1 |
How Autonomy score is composed
Autonomy score is composed of three performance sub-scores: Home/Office, On the go, and Calibrated use cases. Each sub-score comprises the results of a comprehensive range of tests for measuring autonomy in all kinds of real-life scenarios.
95h
Light Usage
Active: 2h30/day
65h
Moderate Usage
Active: 4h/day
40h
Intense Usage
Active: 7h/day
Position in Global Ranking
Battery Life (moderate)
43
rd
7. Samsung Galaxy A15 LTE
78h
8. Honor Magic6 Lite (5800 mAh)
77h
10. Honor Magic6 Lite (5300 mAh)
77h
16. Xiaomi Redmi Note 11S 5G
72h
22. Xiaomi Redmi Note 10 5G
70h
26. Apple iPhone 15 Pro Max
69h
27. Samsung Galaxy A15 5G
69h
29. Samsung Galaxy A13 5G
69h
31. Apple iPhone 13 Pro Max
68h
33. Xiaomi Redmi Note 10 Pro
67h
34. Samsung Galaxy S23 Ultra
67h
35. Xiaomi Redmi Note 12 5G
67h
41. Samsung Galaxy A34 5G
65h
43. Apple iPhone 14 Pro Max
65h
46. Samsung Galaxy A23 5G
64h
52. Motorola Moto G9 Power
64h
55. Xiaomi Redmi Note 12 Pro 5G
62h
56. Samsung Galaxy A14 5G
62h
57. Xiaomi Redmi Note 11 Pro 5G
62h
58. Xiaomi Redmi Note 10S
61h
61. Samsung Galaxy A54 5G
60h
79. Samsung Galaxy A55 5G
57h
86. Samsung Galaxy S24 Ultra
56h
88. Samsung Galaxy A52 5G
56h
89. Xiaomi Redmi Note 13 Pro 5G
56h
91. Xiaomi Redmi Note 12 Pro+ 5G
55h
92. Realme GT Neo 5 (240W)
55h
101. Xiaomi Mi 11 Lite 5G
54h
102. Samsung Galaxy Z Fold5
54h
106. Motorola moto g54 5G
53h
108. Nubia RedMagic 7 Pro
53h
114. Motorola Edge 20 Pro
52h
124. Xiaomi Mi 10T Pro 5G
51h
128. Vivo X60 Pro 5G (Snapdragon)
51h
129. Xiaomi Redmi Note 13 5G
50h
135. Samsung Galaxy S21 5G (Snapdragon)
50h
137. Samsung Galaxy A35 5G
49h
138. Samsung Galaxy A53 5G
49h
143. Samsung Galaxy S24+ (Exynos)
49h
145. Xiaomi Redmi Note 13 Pro Plus 5G
49h
146. Samsung Galaxy S24 (Exynos)
49h
147. Apple iPhone 12 Pro Max
49h
148. Samsung Galaxy Z Fold4
49h
150. Samsung Galaxy S21 Ultra 5G (Snapdragon)
48h
152. Oppo Reno6 Pro 5G (Snapdragon)
48h
155. Motorola Edge 30 Pro
47h
156. Samsung Galaxy A33 5G
47h
157. Samsung Galaxy S22 Ultra (Snapdragon)
47h
158. Samsung Galaxy S23 FE
47h
160. Samsung Galaxy Z Flip5
46h
161. Samsung Galaxy S21 5G (Exynos)
46h
163. Nubia RedMagic 6 Pro
46h
168. Samsung Galaxy S22 Ultra (Exynos)
44h
171. Vivo X80 Pro (Snapdragon)
43h
173. Samsung Galaxy Z Fold3 5G
43h
174. Samsung Galaxy Z Flip4
42h
176. Samsung Galaxy S21 Ultra 5G (Exynos)
41h
178. Apple iPhone 13 mini
41h
179. Apple iPhone 12 mini
40h
181. Samsung Galaxy S22+ (Exynos)
40h
182. Samsung Galaxy S22 (Snapdragon)
39h
185. Samsung Galaxy S21 FE 5G (Snapdragon)
38h
188. Apple iPhone SE (2022)
37h
190. Samsung Galaxy S22 (Exynos)
35h
Position in Ultra-Premium Ranking
Battery Life (moderate)
9
th
4. Apple iPhone 15 Pro Max
69h
5. Apple iPhone 13 Pro Max
68h
7. Samsung Galaxy S23 Ultra
67h
9. Apple iPhone 14 Pro Max
65h
18. Samsung Galaxy S24 Ultra
56h
21. Samsung Galaxy Z Fold5
54h
32. Samsung Galaxy S24+ (Exynos)
49h
33. Apple iPhone 12 Pro Max
49h
34. Samsung Galaxy Z Fold4
49h
35. Samsung Galaxy S21 Ultra 5G (Snapdragon)
48h
38. Samsung Galaxy S22 Ultra (Snapdragon)
47h
40. Samsung Galaxy Z Flip5
46h
41. Samsung Galaxy S22 Ultra (Exynos)
44h
44. Vivo X80 Pro (Snapdragon)
43h
46. Samsung Galaxy Z Fold3 5G
43h
47. Samsung Galaxy Z Flip4
42h
49. Samsung Galaxy S21 Ultra 5G (Exynos)
41h
50. Samsung Galaxy S22+ (Exynos)
40h
A robot housed in a Faraday cage performs a set of touch-based user actions during what we call our “typical usage scenario” (TUS) — making calls, video streaming, etc. — 4 hours of active use over the course of a 16-hour period, plus 8 hours of “sleep.” The robot repeats this set of actions every day until the device runs out of power.
Typical Usage Scenario discharge curves
129
Samsung Galaxy M51
Samsung Galaxy M51
Using a smartphone on the go takes a toll on autonomy because of extra “hidden” demands, such as the continuous signaling associated with cellphone network selection, for example. DXOMARK Battery experts take the phone outdoors and perform a precisely defined set of activities while following the same three-hour travel itinerary (walking, taking the bus, the subway…) for each device
Autonomy for on the go use cases (full charge)
144
Samsung Galaxy M51
Samsung Galaxy M51
For this series of tests, the smartphone returns to the Faraday cage and our robots repeatedly perform actions linked to one specific use case (such as gaming, video streaming, etc.) at a time. Starting from an 80% charge, all devices are tested until they have expended at least 5% of their battery power.
Autonomy for calibrated use cases (full charge)
Charging
107
Realme GT Neo 5 (240W)
Realme GT Neo 5 (240W)
How Charging score is composed
Charging is fully part of the overall battery experience. In some situations where autonomy is at a minimum, knowing how fast you can charge becomes a concern. The DXOMARK Battery charging score is composed of two sub-scores, (1) Full charge and (2) Quick boost.
100
Realme GT Neo 5 (240W)
Realme GT Neo 5 (240W)
Full charge tests assess the reliability of the battery power gauge; measure how long and how much power the battery takes to charge from zero to 80% capacity, from 80 to 100% as shown by the UI, and until an actual full charge.
Position in Global Ranking
Charging Time 0-80%
159
th
1. Realme GT Neo 5 (240W)
0h08
23. Oppo Reno6 Pro 5G (Snapdragon)
0h22
30. Xiaomi Redmi Note 12 Pro+ 5G
0h24
31. Vivo X80 Pro (Snapdragon)
0h24
36. Xiaomi Redmi Note 13 Pro Plus 5G
0h26
56. Xiaomi Redmi Note 13 Pro 5G
0h31
61. Xiaomi Redmi Note 12 Pro 5G
0h33
68. Samsung Galaxy S23 Ultra
0h37
69. Samsung Galaxy S22+ (Exynos)
0h37
73. Samsung Galaxy S24 Ultra
0h38
74. Xiaomi Redmi Note 11 Pro 5G
0h38
77. Samsung Galaxy S22 Ultra (Snapdragon)
0h39
78. Samsung Galaxy S22 Ultra (Exynos)
0h40
79. Vivo X60 Pro 5G (Snapdragon)
0h40
83. Samsung Galaxy S24+ (Exynos)
0h42
88. Xiaomi Redmi Note 12 5G
0h44
93. Samsung Galaxy S21 Ultra 5G (Snapdragon)
0h46
94. Honor Magic6 Lite (5300 mAh)
0h47
98. Samsung Galaxy Z Flip5
0h48
99. Samsung Galaxy S21 5G (Exynos)
0h48
100. Samsung Galaxy S24 (Exynos)
0h49
101. Samsung Galaxy S21 5G (Snapdragon)
0h49
103. Xiaomi Redmi Note 11
0h49
104. Samsung Galaxy S23 FE
0h49
106. Samsung Galaxy A23 5G
0h49
109. Samsung Galaxy S22 (Snapdragon)
0h50
111. Samsung Galaxy Z Fold5
0h51
112. Samsung Galaxy S22 (Exynos)
0h51
113. Samsung Galaxy A35 5G
0h51
115. Apple iPhone SE (2022)
0h51
115. Samsung Galaxy A34 5G
0h51
117. Samsung Galaxy S21 Ultra 5G (Exynos)
0h51
118. Xiaomi Redmi Note 10
0h52
119. Xiaomi Redmi Note 10S
0h52
120. Apple iPhone 12 mini
0h52
122. Samsung Galaxy A55 5G
0h52
123. Samsung Galaxy A54 5G
0h52
125. Xiaomi Redmi Note 13 5G
0h53
126. Samsung Galaxy S21 FE 5G (Snapdragon)
0h53
129. Samsung Galaxy A33 5G
0h54
129. Xiaomi Redmi Note 11S 5G
0h54
131. Samsung Galaxy A15 LTE
0h54
132. Samsung Galaxy A15 5G
0h54
133. Apple iPhone 15 Plus
0h54
134. Xiaomi Redmi Note 10 Pro
0h55
135. Apple iPhone 15 Pro Max
0h56
136. Samsung Galaxy Z Fold4
0h56
137. Honor Magic6 Lite (5800 mAh)
0h56
139. Samsung Galaxy A53 5G
0h57
140. Samsung Galaxy Z Flip4
0h57
141. Apple iPhone 13 mini
0h57
142. Apple iPhone 12 Pro Max
0h57
143. Samsung Galaxy Z Fold3 5G
0h57
149. Apple iPhone 13 Pro Max
1h01
153. Apple iPhone 14 Plus
1h03
159. Apple iPhone 14 Pro Max
1h06
165. Motorola moto g34 5G
1h12
167. Samsung Galaxy A52 5G
1h15
169. Crosscall Stellar-X5
1h20
173. Xiaomi Redmi Note 10 5G
1h22
175. Xiaomi Redmi 10 2022
1h25
178. Motorola Moto G62 5G
1h26
179. Motorola moto g54 5G
1h26
180. Samsung Galaxy A14 5G
1h28
181. Samsung Galaxy A13 5G
1h30
188. Motorola Moto G9 Power
1h53
Position in Ultra-Premium Ranking
Charging Time 0-80%
52
nd
9. Vivo X80 Pro (Snapdragon)
0h24
21. Samsung Galaxy S23 Ultra
0h37
22. Samsung Galaxy S22+ (Exynos)
0h37
26. Samsung Galaxy S24 Ultra
0h38
27. Samsung Galaxy S22 Ultra (Snapdragon)
0h39
28. Samsung Galaxy S22 Ultra (Exynos)
0h40
29. Samsung Galaxy S24+ (Exynos)
0h42
31. Samsung Galaxy S21 Ultra 5G (Snapdragon)
0h46
32. Samsung Galaxy Z Flip5
0h48
35. Samsung Galaxy Z Fold5
0h51
36. Samsung Galaxy S21 Ultra 5G (Exynos)
0h51
40. Apple iPhone 15 Pro Max
0h56
41. Samsung Galaxy Z Fold4
0h56
42. Samsung Galaxy Z Flip4
0h57
43. Apple iPhone 12 Pro Max
0h57
44. Samsung Galaxy Z Fold3 5G
0h57
46. Apple iPhone 13 Pro Max
1h01
52. Apple iPhone 14 Pro Max
1h06
Power consumption and battery level during full charge
The charging curves, in wired and wireless (if available) showing the evolution of the battery level indicator as well as the power consumption in watts during the stages of charging toward full capacity.
Power consumption and battery level during wireless full charge
The charging curves, in wired and wireless (if available) showing the evolution of the battery level indicator as well as the power consumption in watts during the stages of charging toward full capacity.
114
Realme GT Neo 5 (240W)
Realme GT Neo 5 (240W)
With the phone at different charge levels (20%, 40%, 60%, 80%), Quick boost tests measure the amount of charge the battery receives after being plugged in for 5 minutes. The chart here compares the average autonomy gain from a quick 5-minute charge.
Average autonomy gain for a 5 minute charge (wired)
Efficiency
140
Oppo Reno6 5G
Oppo Reno6 5G
How Efficiency score is composed
The DXOMARK power efficiency score consists of two sub-scores, Charge up and Discharge rate, both of which combine data obtained during robot-based typical usage scenario, calibrated tests and charging evaluation, taking into consideration the device’s battery capacity. DXOMARK calculate the annual power consumption of the product, shown on below graph, which is representative of the overall efficiency during a charge and when in use.
Annual Consumption Apple iPhone 14 Pro Max
3.7 kWh
Efficient
Good
Bad
Inefficient
88
Nubia RedMagic 7 Pro
Nubia RedMagic 7 Pro
The charge up sub-score is a combination of four factors: the overall efficiency of a full charge, related to how much energy you need to fill up the battery compared to the energy that the battery can provide; the efficiency of the travel adapter when it comes to transferring power from an outlet to your phone; the residual consumption when your phone is fully charged and still plugged into the charger; and the residual consumption of the charger itself, when the smartphone is disconnected from it. The chart here below shows the overall efficiency of a full charge in %.
Overall charge efficiency
176
Apple iPhone 14 Pro
Apple iPhone 14 Pro
The discharge subscore rates the speed of a battery’s discharge during a test, which is independent of the battery’s capacity. It is the ratio of a battery’s capacity divided by its autonomy. A small-capacity battery could have the same autonomy as a large-capacity battery, indicating that the device is well-optimized, with a low discharge rate.
Average discharge current
DXOMARK encourages its readers to share comments on the articles. To read or post comments, Disqus cookies are required. Change your Cookies Preferences and read more about our Comment Policy.