Smartphones  >  Apple iPhone 14 Pro Max  >  Battery Test Results
Ultra-Premium ?

Apple iPhone 14 Pro Max Battery test

OTHER AVAILABLE TESTS FOR THIS DEVICE

We put the Apple iPhone 14 Pro Max through our rigorous DXOMARK Battery test suite to measure its performance in autonomy, charging and efficiency. In these test results, we will break down how it fared in a variety of tests and several common use cases.

Overview

Key specifications:

  • Battery capacity: 4323 mAh
  • 20W charger (not included)
  • 6.7-inch, 1290 x 2796, 120 Hz, OLED display
  • Apple A16 Bionic (4 nm)
  • Tested ROM / RAM combination: 512 GB + 6 GB

Scoring

Sub-scores and attributes included in the calculations of the global score.


Apple iPhone 14 Pro Max
133
battery
151
Autonomy
161

221

129

195

144

198

107
Charging
100

224

114

212

88

205

176

194

Key performances

Charging Time
2 days 17h
Battery life
Charging Time
1h06
80% Charging time
Charging Time
2h21
Full charging time
Quick Boost
3h20 autonomy
after 5-minute charge

Pros

  • Excellent performance during a typical usage scenario, with low discharge currents
  • Excellent autonomy in calibrated mode, especially when streaming videos
  • Very good autonomy when scrolling on social apps on the go
  • Low discharge currents overall

Cons

  • Low autonomy when using the camera
  • Poor charging experience
  • Very low wired charge efficiency

The Apple iPhone 14 Pro Max reached an excellent global score but stands slightly below its predecessor, the iPhone 13 Pro Max. The latest device was tested with the “always-on display” mode turned off — a feature that we deactivate for all models in our tests for a fair comparison. The score difference with the 13 Pro Max was mainly due to slightly lower performance during on-the-go and calibrated tests, but the results remained close.

The iPhone 14 Pro Max showed an excellent performance during the typical usage scenario, with less than 2% lost per night on average. Outdoors, the screen’s brightness was excellent, but it came at a slight cost to the autonomy. Autonomy was very good when scrolling social apps, which we test in the subway, but battery performance struggled when using the new demanding camera and during the navigation tests. However, when testing in calibrated mode, the autonomy was above average across all our use cases, especially when streaming videos, but slightly below average in the call test.

When it came to charging, the small 20W charger took 2 hours and 21 minutes to fill up the 4323 mAh battery. Similarly, the wireless charger took 2 hours and 44 minutes to fully charge the battery, which was longer than average. The residual consumption of both wired and wireless chargers was very low.
The discharge currents were very low, too, meaning that the device was well-optimized, whatever the use case.

Compared with devices from the same Ultra-premium price range ($800+), the iPhone earned the second top score, just below its predecessor, thanks to its excellent autonomy and efficiency. However, its charging score was among the lowest.

Test Summary

About DXOMARK Battery tests: For scoring and analysis in our smartphone battery reviews, DXOMARK engineers perform a variety of objective tests over a week-long period both indoors and outdoors. (See our introductory and how we test articles for more details about our smartphone Battery protocol.)

The following section gathers key elements of our exhaustive tests and analyses performed in DXOMARK laboratories. Detailed performance evaluations under the form of reports are available upon request. Do not hesitate to contact us.

Battery Charger Wireless Display Processor
Apple iPhone 14 Pro Max 4323mAh 20W
(not included)
15W OLED
1290 x 2796
Apple A16 Bionic
Apple iPhone 13 Pro Max 4352mAh 20W
(not included)
15W OLED
1284 x 2778
Apple A15 Bionic
Samsung Galaxy S22 Ultra (Snapdragon) 5000mAh 45W
(not included)
15W AMOLED 2X
1440 x 3088
Qualcomm Snapdragon 8 Gen 1
Oppo Find X5 Pro 5000mAh 80W
(included)
50W (LTPO) OLED
1440 x 3216
Qualcomm Snapdragon 8 Gen 1

Autonomy

151

Apple iPhone 14 Pro Max

195

Honor X7b
How Autonomy score is composed

Autonomy score is composed of three performance sub-scores: Home/Office, On the go, and Calibrated use cases. Each sub-score comprises the results of a comprehensive range of tests for measuring autonomy in all kinds of real-life scenarios.

Light Usage
95h
Light Usage
Active: 2h30/day
Moderate Usage
65h
Moderate Usage
Active: 4h/day
Intense Usage
40h
Intense Usage
Active: 7h/day

Home/Office

161

Apple iPhone 14 Pro Max

221

Honor X7b

A robot housed in a Faraday cage performs a set of touch-based user actions during what we call our “typical usage scenario” (TUS) — making calls, video streaming, etc. — 4 hours of active use over the course of a 16-hour period, plus 8 hours of “sleep.” The robot repeats this set of actions every day until the device runs out of power.

Typical Usage Scenario discharge curves

On the go

129

Apple iPhone 14 Pro Max

195

Samsung Galaxy M51

Using a smartphone on the go takes a toll on autonomy because of extra “hidden” demands, such as the continuous signaling associated with cellphone network selection, for example. DXOMARK Battery experts take the phone outdoors and perform a precisely defined set of activities while following the same three-hour travel itinerary (walking, taking the bus, the subway…) for each device

Autonomy for on the go use cases (full charge)

Calibrated

144

Apple iPhone 14 Pro Max

198

Samsung Galaxy M51

For this series of tests, the smartphone returns to the Faraday cage and our robots repeatedly perform actions linked to one specific use case (such as gaming, video streaming, etc.) at a time. Starting from an 80% charge, all devices are tested until they have expended at least 5% of their battery power.

Autonomy for calibrated use cases (full charge)

Charging

107

Apple iPhone 14 Pro Max

218

Realme GT Neo 5 (240W)
How Charging score is composed

Charging is fully part of the overall battery experience. In some situations where autonomy is at a minimum, knowing how fast you can charge becomes a concern. The DXOMARK Battery charging score is composed of two sub-scores, (1) Full charge and (2) Quick boost.

Wired
Wired
42%
in 30 min
1h06
0 - 80%
2h21
Full charge
Wireless
Wireless
25%
in 30 min
1h55
0 - 80%
2h44
Full charge

Full charge

100

Apple iPhone 14 Pro Max

224

Realme GT Neo 5 (240W)

Full charge tests assess the reliability of the battery power gauge; measure how long and how much power the battery takes to charge from zero to 80% capacity, from 80 to 100% as shown by the UI, and until an actual full charge.

Power consumption and battery level during full charge
The charging curves, in wired and wireless (if available) showing the evolution of the battery level indicator as well as the power consumption in watts during the stages of charging toward full capacity.
Power consumption and battery level during wireless full charge
The charging curves, in wired and wireless (if available) showing the evolution of the battery level indicator as well as the power consumption in watts during the stages of charging toward full capacity.
Time to full charge
Time to full charge

Quick boost

114

Apple iPhone 14 Pro Max

212

Realme GT Neo 5 (240W)

With the phone at different charge levels (20%, 40%, 60%, 80%), Quick boost tests measure the amount of charge the battery receives after being plugged in for 5 minutes. The chart here compares the average autonomy gain from a quick 5-minute charge.

Average autonomy gain for a 5 minute charge (wired)

Efficiency

140

Apple iPhone 14 Pro Max

154

Oppo Reno6 5G
How Efficiency score is composed

The DXOMARK power efficiency score consists of two sub-scores, Charge up and Discharge rate, both of which combine data obtained during robot-based typical usage scenario, calibrated tests and charging evaluation, taking into consideration the device’s battery capacity. DXOMARK calculate the annual power consumption of the product, shown on below graph, which is representative of the overall efficiency during a charge and when in use.

Annual Consumption Apple iPhone 14 Pro Max
3.7 kWh
Efficient
Good
Bad
Inefficient

Charge up

88

Apple iPhone 14 Pro Max

205

Nubia RedMagic 7 Pro

The charge up sub-score is a combination of four factors: the overall efficiency of a full charge, related to how much energy you need to fill up the battery compared to the energy that the battery can provide; the efficiency of the travel adapter when it comes to transferring power from an outlet to your phone; the residual consumption when your phone is fully charged and still plugged into the charger; and the residual consumption of the charger itself, when the smartphone is disconnected from it. The chart here below shows the overall efficiency of a full charge in %.

Overall charge efficiency

Discharge

176

Apple iPhone 14 Pro Max

194

Apple iPhone 14 Pro

The discharge subscore rates the speed of a battery’s discharge during a test, which is independent of the battery’s capacity. It is the ratio of a battery’s capacity divided by its autonomy. A small-capacity battery could have the same autonomy as a large-capacity battery, indicating that the device is well-optimized, with a low discharge rate.

Average discharge current

DXOMARK encourages its readers to share comments on the articles. To read or post comments, Disqus cookies are required. Change your Cookies Preferences and read more about our Comment Policy.